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Abstract
During the summer of 1988, severe drought caused
extensive loss of crops in the midwestern United States. A
high resolution physically comprehensive atmospheric
numerical model (Purdue Mesoscale Model, PMM) is
integrated for the thirty days of June 1988. The
preliminary results show the PMM can reproduce the
observed weather patiern of June 1988 very well. It is
also proved that this mode!l can be an important tool to

study the regional climate change and water cycle in a

time scale of monih over a large continent.

f. Introduction

The drought of 1988 over the Midwest and Gulf
States of the USA (Fig. 1) had caused severe damage in
agriculure, transportation and other resources. Although
many scientists have worked on this problem, the cause of
the drought is still unciear. The existing operational
numerical weather prediction models failed 1o predict the
1988 drought or the 1993 Mood in Mississippi Vallcy,

which also cansed casualty of life and the (remendous lost

in agricullure and property.
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Since flood or drought can threaten most place around
the world, an accurate long-range weather forecasting will
be crucial in order to reduce the lost of life and properties
due to the extreme weather phenomena. Here, we apply
the Purdue Mesoscale Model (PMM) to simulate the
evolution of the weather during June of 1988. The thirty
days simulations show that with an appropriate initial and
lateral boundary conditions, the PMM is capable of
reproducing the observed wealher patiern reasonably well.
Furthermore, the PMM can produce a complete data set in
both space and time 10 study the detailed evolution of the
weather as well as the hydrological cycle. We can also
test different forcing (or parameler) in a numerical model
in order 1o evaluate the importance of that particular

forcing (or parameter). Hence, the PMM can become an

important too! 1o study the changes of regional climate.

2. Purdue Mesoscale Model
2.A Basic Equations and Physics

The model is based on the hydrostatic approximation
in a terrain-following sigma-p (o) coordinate. Here, o is

dcﬁﬁul a5
0= (p-pAPspy) = (P-p /D



where, p, Pg and Py are the pressure, the surlace pressure,

and the pressure at the top of the model, respectively,
There are ten prognoslic equations in the model for ten
primary variables:

O (the equivalent potential lemperature)

Gy (the total water conlent q, ; qy, = G, (waler vapor

mixing ratio) + q)( cloud water mixing ratio) ),

uand v (the horizontal components of wind),

p, (=pg-p)

TKE (lurbulent kinctic energy),

Tgfe (surface soil temperature),

wre (surlace soil moisture).

T7 (tlemnperature inside the soil), and

w1 (water conlent inside the soil).

The general form of those nonlinear partial differential

cquations can be expressed as:

99 o0 _ de 'dp
L “ax Vax %50 (1)
~ souce(p) + diff(y)

where u=(Ix/di, va=dy/dt, and &=do/dt are velocily along the
x, y and g coordinate, respectlively; source(p) is the
source or sink of ¢; diff(e) is the diffusion. 1t is noted

that there is no advection terms for equations of Tgp ,

wgfe, T, and wy. The equation of conservation of mass

is given by

(2)

In addition to the prognostic equations, there arce
several diagnostic equations in the model o compute

some diagnostic variables, for example, the velocily o
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along the g-coordinate, pressure, temperalure, waler

vapor, and eddy-dilfusion coefficients. The delails of those

equations can be found in [11, |2], and [3]. The physics of

atmosphere have been parameterized in the model, these

includes:

{a) the surface budgel equations for heat and moisture
with or without vegetation [4] ;

®)
(©)

similarity equations at the constant flux layer [5];
the turbulence paramelerizations and eddy fluxes in
the planetary boundary layer ([6] and [7]) ;

{d) the short-and long-wave radiations for both inside and
outside the cloud ([8] and [9]) ;

() the phase change of water substance and diabatic
heating [10] ;

)

)

cumulus parameterizalion ([11] and 12) ;
the observed sea surface temperature is used over the

ocean,

2.B Numerical Method and Experiment{al
Designs

A Llime-splitting scheme is used in the intcgration of
the governing equation. It allows the application of
dilfercnt numerical methods and thme intervals to dilferent
lerms or groups of terms in the governing equations ([13]
amd [100). A small time interval with a forward-backward
scheme ([14] and [15]) is applied (0 the terims involving
inertia-gravily waves. This scheme not only allows twice
the time interval used in the leapfrog scheme, but also
avoids the 2A1 waves that usually exist in a central-
difference scheme in time. Another time interval, Aly,
limited by the horizoutal advection, is applied to the

horizontal advection, the diffusion terms and surface

budget cquations. ‘The radiation is calenlated cvery 30



minutes. We also use a local reference to calculate the
pressure gradient terms, as suggested by {16} in order to
avoid the huge errors over the mountain areas. The
adveclion scheme developed by [17] is applied in this
model.

The Arakawa C siaggered grid is chosen in this
model. The domain has 25 vertical layers from the surface
up o 100 mb. A stretched grid is used in the verlical
direction in order 10 have beltter resolution in the lower
aimosphere, In this study, the interior arca of the
horizontal domain is about 6000 x 4500 km?, consisting
of 100 x 75 grid points with horizontal grid interval of Ax
= Ay = 60 km, which is surrounded by a buffer zone wilh
a much larger space interval (= 6Ax) 10 reduce the
reflection and uncertainly around the lateral boundary.
Newtonian clumping is applied o the top five layers in
order Lo avoid reflection of 1the waves from the wop. A
weak horizonlal smoothing is also applied in the
prognostic equations to avoid nonlinear instability. ‘The
details of the numerical method can be found in [1], [2]
and [3].

This model has been applied o simulate the cold air
outbreak and cellular convection over the Kuroshio
Current ({10] and [18]), lee -vortexes and mesolow in
Taiwan ({1], {19] and {20]); the low-level jet (LLJ) and
moisture convergence for Taiwan Area Mesoscale
Experiment (TAMEX) I0P-2 [21]; the formation of the
dryline, and the interactions among (he nocturnal LLIJ,
soil moisture, vertical wind shear, and the slope of terrain
near the dryline over the Greal Plains [2], winler
cyclogencsis over the Rocky Mountains {3]. The model
has also been used to study the squall line and mesoscale
(11},

cyclogenesis |22]. The results show that this model can

conveclive system -during SESAME and
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successfully simulate the real atmosphere under various
environments. The detailed description of the current

version of the PMM is referred 10 [3].

3. Numerical Results and Discussion

It is well known that the numerical weather
predictioin is an initiat and boundary value problem. The
initial and boundary conditions are provide by the PMM
objeclive analysis package. The standard data seis used in
the package inctude the European Center for Medium-
Range Weather Forecasts (ECMWF) gobal advanced
operational upper-air spectral analysis and surface analysis,
the 10-min resolced U. S, Navy global elevation data, the
1 degree resolved Reynold's NMC CAC weekly sea
surfcae temperature data, and the 1 degree resolved
Henderson-Seller's global vegetation and soils data, The
lateral boundary condition is aiso updated by interpreting
the every six-hourly ECMWF analysis at the later
boundary. ECMWE analyses at 0000 Z_June 1 1988 are
used as the initial conditions. The initial tlemperature,
geopotential, mixing ratio, and wind vector at 500 mb
(the mid-level of the atmosphere) are shown in Figs. 2a-d.

The simulation was started at 0000 Z 1 June and
integrated for one month. For numerical stability, the
smalt time interval used in this study was 200 sec. After
30 days’ integration without nudging, the simulated
lemperature, geopolential, moisture, and wind vicor at 500
b are shown in Figs. 3a-d. They are comparable to the
observations, shown in Figs. 4a-d.

The simulated monthly mean ficlds (Figs. Sa-d)
shown a well developed warm ridge over the over north
America, and deep troughs developed along east and west

coasts. The persistent warm ridge over the north America



effectively blocked the moisture supply from the Gulf of ~

Mexico and resulted in a severe drought during June of
1988. The humidity is very low over Mississippi Valley
and west Pacific Ocean. They are also in good agreement

with observations (Figs. 6a-d).

4. Summary

This preliminary results show the PMM can
reproduce the observed weather pattern of June 1988 very
welt. It is also proved that this model can be an
important tool to study the regional climate change and
waler cycle in a time scale of month over a large
continent. It is well known that the nunerical weather
prediction models require huge computer CPU, memory,
and disk space. The PMM was developed under CYBER
205 supercomputer enviroment. Recently, we have
modified the model to run in a IBM SP2 parallel
compuling machine. For this simulation it took 800,000
sec CPU time (IBM/RISC-590 processor), 128 megabytes
RAM, and 3 gigabytes of daia slorage.
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River Basin on 15 June 1988 [23].

173

The areas of severe drought in the Mississippi
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